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Flu is caused by influenza viruses. The primary defense
against influenza A and B is through vaccination. Seasonal

flu viruses constantly undergo antigenic variations by changing
their surface glycoprotein hemagglutinin (HA or H). The flu
vaccines are reformulated each year tomatch antigenic variations.
The formulations are recommended by public health organ-
izations such as WHO, CDC, and FDA.1 Each year, the
predominant strains expected to dominate the coming flu season
are predicted based on global surveillance and analysis of
circulating strains. For example, the strains selected for the
2011−2012 flu season are A/California/7/09 (H1N1-pandem-
ic), A/Perth/16/2009 (H3N2), and B/Brisbane/60/2008
( h t t p : / /www . f d a . g o v /N ew s E v e n t s /N ew s r o om/
PressAnnouncements/ucm263319.htm). Influenza A is respon-
sible for pandemic flu. Influenza A subtypes are characterized by
two different surface glycoproteins: hemagglutinin (HA or H)
and neuraminidase (NA or N). Wild birds are the reservoir of
influenza A viruses. Avian strains are periodically migrated into
the pool of virus circulating in mammals including humans, and
reassortments of genomic RNA segments from human and avian
influenza A viruses can lead to emergence of pandemic strains.2

Also, an avian strain can adapt to the human host and attain
human-to-human transmission capability through acquired
mutations. An unexpected human adaptation of an influenza
subtype or strain other than currently circulating influenza
viruses causes pandemic flu. The pandemics of 1918 H1N1
(Spanish flu), 1957 H2N2 (Asian flu), 1968 H3N2 (Hong Kong
flu), 2005 H5N1 (bird flu), and 2009 H1N1 (swine flu)
symbolize the devastating public health and socioeconomic
impacts of pandemic flu and keep us alert for any such outbreak.
Adaptation of 2005 H5N1 virus for human-to-human trans-
mission and emergence of Tamiflu-resistant influenza A viruses
are among the imminent threats. Additionally, seasonal flu is
responsible for about 50 000 deaths per year.

■ GENES AND PROTEINS OF INFLUENZA A
Influenza A virus is a member of the Orthomyxoviridae family3

and has eight negative-stranded RNA genomic segments (Figure
1a) within a lipid bilayer envelope. The eight RNA segments are
responsible for the synthesis of 12 known polypeptide chains.
The envelope surface is spiked with multiple copies of HA and
NA and fewer M2 ion-channel proteins. The three largest RNA
segments encode the three viral RNA-dependent RNA polymer-
ase (RdRP) proteins PA, PB1, and PB2. The PB1 gene also
encodes a small ∼90-amino acid nonstructural protein PB1-F2
that has apoptotic functions4 and is involved in inhibiting
interferon production;5 however, the effect of PB1-F2 appears to
be influenza strain specific.6 The PB1 gene also encodes a newly
discovered third protein “N40”, an N-terminal truncated product
of PB1. N40 does not interfere with virus viability; viruses that do
not express both N40 and PB1-F2 have normal replication.

However, viruses that have only the PB1-F2 gene replicate slowly
if the N40 protein is not produced.7 There are two specific
genomic segments for encoding the two surface proteins HA and
NA. The sixth segment encodes the nucleoprotein (NP)
molecules that wrap the viral RNAs (vRNAs) to form viral
ribonucleoprotein particles (vRNPs). In fact, each vRNA
segment exists as a vRNP (Figure 1b) that has a heterotrimeric
polymerase with the NP-encapsidated vRNA.8 The M1 matrix
protein and the M2 ion-channel protein are both synthesized
from a single genomic segment. The smallest genomic segment
encodes the nonstructural proteins NS1 and NS2/NEP (nuclear
export protein). Influenza A life cycle in a cell includes the
sequential steps, namely, viral attachment to cell surface sialic
acid receptors, entry of the virus as endosome followed by fusion,
replication and transcription of viral genes, suppression of host
immunity, assembly, budding and release of new viruses; see a
schematic representation of influenza A life cycle in our earlier
review.9 Each viral protein plays critical and specific roles to
accomplish these steps, and therefore, these proteins are either
targeted by current anti-influenza drugs/vaccines or are potential
new targets.

■ MOLECULAR TARGETS OF INFLUENZA A
Current vaccines raise an immune response against HA, which is
also a prime target for antibody-based therapy initiatives.
Recently discovered, broadly neutralizing monoclonal antibodies
CR6261,10 F10,11 and FI612 that bind to a common conserved
region of HA, although via different sets of molecular
interactions, provide promising leads. The other two surface
proteins NA and M2 are currently targeted by chemotherapeutic
agents, and specific mutations on the targeted proteins confer
drug resistance. The heterotrimeric polymerase complex exists as
an independent entity or as a part of vRNP, and the polymerase is
responsible for transcription and replication of viral genetic
information. Because of its multidomain structure and multiple
enzymatic activities, the polymerase can be targeted at different
sites. NP molecules are involved in multiple functions.13 NP
molecules (i) oligomerize and wrap around a vRNA to form
vRNP, (ii) bind to ssRNA, (iii) contain nuclear localization signal
(NLS) sequences, and (iv) interact with polymerase complex
and M1 molecules at various stages in the influenza A life cycle.
Current research initiatives have discovered potential druggable
sites and inhibitors of NP.14 The NS1 protein of influenza A
binds dsRNA,15 CPSF30,16 and phosphoinositide 3-kinase
(PI3K)17 and suppresses the host responses to influenza A
infection primarily via these molecular interactions. The distinct
sites on NS1 that bind the above cellular entities provide
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opportunities for drug discovery. Extensive ongoing research has
discovered multiple potential targets to block critical steps of the
viral life cycle by blocking functions of viral proteins and host−
virus interactions.18 This review analyzes the current under-
standing on the molecular mechanisms of resistance to existing
drugs and provides a perspective into designs of new antivirals
targeting resistant NA and M2 proteins and the multifunctional
polymerase of influenza A.

■ GENETIC VARIATIONS AND DRUG RESISTANCE
Vaccines and drugs have been used to control many challenging
pathogens. The pathogens that do not undergo high genetic
variations or are less adaptive could be successfully irradiated or
suppressed primarily through vaccination, whereas several
viruses or bacteria such as HIV, tuberculosis bacterium, and
malaria parasites, etc. have the ability to undergo genetic
variations to overcome immune responses raised by a vaccine or
reverse the interruption of pathogen functions by drugs. A viral

infection, such as influenza, HIV, or hepatitis C (HCV), is
transmitted as a pool of viral variants19 in alliance with a
predominant wild-type virus. A wild-type strain is predominant
because it is the most fit for replication in a normal infection
environment; however, the less-fit variants also replicate,
although at a slower rate. A drug primarily targets the wild-
type pathogen, and therefore, the use of drugs can considerably
reduce the population of the wild-type variants. In contrast, a
drug may have significantly less impact on some of the minor
variants, and a most-fit variant gradually becomes the
predominant strain under the selective pressure imposed by
the drug. Often, a drug-resistant strain acquires compensatory
mutations to enhance its fitness. The sequence of emergence of
drug resistance and compensatory mutations is complex and
appears to be resistance-path-specific; i.e., a drug resistant mutant
may acquire compensatory mutations to enhance fitness or a
resistance mutation may evolve from a preexisting variant
containing compensatory mutations. Either of the two paths or a

Figure 1. Segmented genes and proteins of influenza A. (a) Eight segmented viral genes (yellow) and 12 known polypeptides are shown. The PA, PB1,
and PB2 chains assemble to form the viral polymerase. PB1 gene is also responsible for synthesis of two proteins PB1-F2 and N40 that are nonessential
and influenza strain specific. The matrix protein M1 and ion-channel protein M2 are encoded from one genomic segment. Also, a single genomic RNA
encodes both the nonstructural proteins NS1 and NS2/NEP (nuclear export protein). (b) An EM reconstruction image of RNP (ribonucleoprotein).
Docked nucleoprotein (NP)molecules are shown as ribbons. Part b was reproduced from the open-access journal PLoS Pathogenswith permission from
authors Coloma et al.75
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combination of them helps raise a population of a drug-resistant
strain that then carries out new infections.
Antivirals are used for both prophylactic and therapeutic

treatments during seasonal influenza epidemics,20 and antivirals
also provide a cost-effective stockpiling option for reducing the
impact of a fast-spreading pandemic. Influenza antivirals are the
inhibitors of M2 ion channel protein (adamantanes) and NA
(zanamivir and oseltamivir). However, currently circulating
influenza A virus strains21 are mostly resistant to adamantanes.
The NA-inhibiting drug zanamivir (Relenza) is inhaled, and the
NA-inhibiting drug oseltamivir (Tamiflu) is a widely used oral
drug. Emergence of oseltamivir-resistant seasonal and pandemic
strains is on the rise.22 The necessity of discovering new drugs to
overcome resistance and looming threats of sporadic outbreaks
of pandemic influenza A strains, particularly after the recent 2009
H1N1 outbreak, has renewed our interest in gaining a deeper
understanding of the structures and functions of the viral protein
components and their interactions. The array of information
coming out of new research initiatives is providing a basis for
designing new antivirals to block different steps in the virus life
cycle.9

■ SIALIC ACID-MIMIC DRUGS TARGETING
NEURAMINIDASE (NA)

Newly formed viruses are attached to the parent cell surface sialic
acid (1, Figure 2). The cell surface enzyme NA releases the
viruses by cleaving the glycosidic bond of the sialic acid
residues.23 NA has been the most successful influenza drug
target. Compound 2 (2,3-didehydro-2-deoxy-N-acetylneura-
minic acid or Neu5Ac2en)24 was the first to be discovered as a
potent NA inhibitor based on understanding the catalytic
reaction-intermediate states of a sialic acid in NA. Studies of
Neu5Ac derivatives by Glaxo Research Laboratories indicated
that Neu5Ac2en had low therapeutic impact on infected mice,
primarily because of rapid excretion.25 Crystal structures of NA
in the early 1980s revealed a conserved sialic acid binding

pocket.26,27 Subsequently, the structures and structure-based
modeling28 played a critical role in the development of NA
substrate mimics, and these efforts24 led to the discovery of 3
(zanamivir).29 The compounds synthesized with a guanidine or
amino group replacing the hydroxyl group of 2 at the C4-position
showed higher retention in animal models. The 4-guanidine
group improved the binding affinity by gaining several
interactions with surrounding acidic side chains of Glu119,
Asp151, and Glu227 and main-chain carbonyls of Asp151 and
Trp178; these amino acid residues are highly conserved in NAs
of influenza viruses. The resultant compound 3 demonstrated
potency as an inhalant in influenza-infected mice and ferrets,29

and 3 (zanamivir) was subsequently approved for human use as
an inhalant drug.
The glycerol moiety of Neu5Ac compounds has O−H···O

type interactions with Glu276 (Figure 3a). A systematic attempt
to replace the glycerol moiety by a lipophilic group led the
discovery of 4 (oseltamivir);30 the chemical substitutions of (i)
the glycerol moiety with a hydrophobic l-ethylpropoxy group and
(ii) the 4-guanidine/4-hydroxyl group of zanamivir/Neu5Ac2en
with an amine reduced the polarity and increased lipophilicity of
the compound, leading to the formulation of oseltamivir as an
oral prodrug. Both 3 (zanamivir) and 4 (oseltamivir) are highly
effective in treating influenza A and B infections in humans and
have favorable profiles for pre- and postexposure prophylaxis.31

Peramivir (5),32 the latest NA inhibitor developed by BioCryst, is
approved as an intramuscular injection for patients with acute
viral infections.33 In contrast to the cyclohexene ring of
oseltamivir, peramivir has a central cyclopentane ring. Despite
differences in chemical compositions, all three NA drugs (3, 4, 5)
share a common mode of binding (Figure 3a,b) within the
conserved substrate-binding pocket of NA.34 Peramivir binding
preserves (i) the hydrophilic interactions of the guanidine group
that it shares with 3 (zanamivir), (ii) hydrophobic interactions of
the ethylpropoxy group that it shares with 4 (oseltamivir), (iii)
the hydrogen bond of an OH group analogous to that of the 2-

Figure 2. Sialic acid substrate and inhibitors of neuraminidase (NA): (1) sialic acid, (2) 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en),
(3) zanamivir, (4) oseltamivir (free acid), (5) peramivir, (6) 3-(p-tolyl)allyl-Neu5Ac2en,41 and (7) 5-acetamido-2,6-anhydro-4-[N-(3-
piperazinocarbonyl)propyl]guanidino-3,4,5-trideoxy-D-glycero-D-galactonon-2-enonic acid, a derivative of zanamivir.42
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OH group of 1 (sialic acid), and (iv) the conserved interactions
of the carboxylate present in all the compounds.

■ OVERCOMING RESISTANCE TO NEURAMINIDASE
INHIBITORS

The most widely used oral influenza drug 4 (oseltamivir) has a
distinct chemical substitution of an ethylpropoxy group replacing
the glycerol moiety of the substrate. This part has the largest

structural and chemical differences when binding modes of NA
substrate and inhibitors are compared (Figure 3b). The glycerol
moiety has bidentate O−H···O interactions with the side chain of
Glu276 (Figure 3a), whereas the ethylpropoxy group of
oseltamivir has hydrophobic stacking with Glu276. Influenza
viruses have acquired the ability to discriminate oseltamivir from
the substrate by developing NA mutations. Several NA
mutations35 including E119V/I36 and R292K cause resistance

Figure 3. Structural basis for binding and resistance to drugs targeting neuraminidase (NA): (a) stereoview of binding of sialic acid to NA; (b)
stereoview showing strikingly similar modes of binding of sialic acid (1, yellow), zanamivir (3, cyan), oseltamivir (4, green), and peramivir (5, orange).
(c) Mutation H274Y causes resistance to oseltamivir (green space filling representation) by repositioning the pocket residue E276. The compensatory
mutations R222Q and V234M restore the fitness of NA H274Y mutant virus39 presumably by enhancing flexibility of E276 and the structural motif (in
blue) that contains the residues H274 and E276. A crystal structure shows the 150-cavity34 that was discovered upon a short soak of oseltamivir into an
NA crystal. (d) Compound 6 is modeled as a 2D structure (yellow). The inhibitors (641 and 742) were designed to occupy the cavity.
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to oseltamivir; however, H274Y mutation is predominantly
observed in N1 oseltamivir-resistant strains.22a,c Crystal
structures of H274Y mutant NA (N1 strain) complexes37

provide a basis for understanding the molecular mechanism of
the antiviral resistance by the mutation. The mutation site is
located at a distance from the substrate-binding pocket (Figure
3c); however, Tyr274 in H274Y mutant NA repositions the side
chain of Glu276, and the altered interaction between Glu276 and
the ethylpropoxy group leads to discrimination against
oseltamivir and the development of resistance. The structure of
the mutant NA with 3 (zanamivir) revealed that the binding of 3

and interactions of its glycerol moiety with Glu276 are unaffected
by H274Y mutation, which explains why H274Y develops
significant resistance to 4 (oseltamivir) compared to 3
(zanamivir). Influenza strains that acquired NAH274Y mutation
were found to replicate slowly, which reaffirmed the clinical
benefit of oseltamivir even though the H274Y mutation causes
oseltamivir resistance.38 However, the emergence of compensa-
tory mutations enhances the fitness of NA H274Y mutant
viruses.39 The H274Y mutant grows ∼100-fold more quickly
when it contains two compensatory NA mutations R222Q and
V234M compared to the variant containing only H274Y

Figure 4. Structure, function, and inhibition of M2. (a) Schematic representation from Das et al. 20109 showing vRNPs attached to the inner surface of
the lipid bilayer viral membrane and proton inflow into virus from endosome releases vRNPs. (b) Ribbon and surface representation of tetrameric M2
conductance domain (transmembrane (TM) and intracellular helices) structure (PDB code 2L0J).62 The pore is blocked by an amantadine molecule
(green), and the low-affinity allosteric binding sites are docked by rimantadine (blue)molecules based on the inhibitor positions in theNMR structure of
the M2−rimantadine complex.56 (c) Closer view of the amantadine in the pore. The tetrameric clusters V27, S31, G34, and H37 in the channel are
involved in the positioning of adamantanes in the pore, and S31N is the primary clinical mutation associated with adamantane resistance. (d) A closer
view of two of the four allosteric pocket regions in the solid-state NMR structure62 shows the potential of the sites for binding of larger molecules than
rimantadine that may have higher affinities.
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mutation; the triple mutant has a fitness comparable to that of the
wild-type virus. Here is a possible structural explanation of the
role of the compensatory mutations. In the NA enzyme,
mutation sites R222 and V234 are parts of a structural motif
that contains both His274 and Glu276 (Figure 3c). The
repositioned Glu276 by H274Y mutation seemingly impairs
the enzymatic activity of NA, even though the substrate binding
is not significantly affected. E276Q/D mutant NA proteins were
well folded, yet inactive40 which suggests that right positioning
and flexibility of the Glu276 side chain are essential for NA
activity; however, a recombinant H3N2 virus containing E276D
mutation replicates and confers resistance to both 3 (zanamivir)
and 4 (oseltamivir).35 The H274Y mutation restricts the
flexibility and repositions the side chain of Glu276.37 The
R222Qmutation adjacent to Glu276 is likely to restore flexibility
of the Glu276 side chain, and both R222Q and V234M
mutations may allow a greater adaptability to the structural
motif to help restore enzyme activity.
The drug 3 (zanamivir) that resembles the substrate more is

less affected by resistance mutations compared to 4 (oseltami-
vir). By contrast, chemical modifications are essential to improve
pharmacokinetic and bioavailability of a drug candidate.
Upcoming NA inhibiting drugs should overcome the impact of
existing resistance mutations. The recently identified transient
“150-cavity”34 (Figure 3d) provides opportunities for discovery
of new NA inhibitors. Structures obtained from crystals of N1
and N8 NA34 soaked with oseltamivir for a short period revealed
the presence of the “150-cavity” adjacent to and accessible from
the substrate-binding pocket.34 These structural results indicate
that initial binding of sialic acid or analogue inhibitors requires
the opening of the 150-loop which creates the 150-cavity. The
150-cavity is prominent in group-1 NAs and not group-2 NAs.34

Modified Neu5Ac2en derivative (6)41 and zanamivir derivative
(7)42 containing C-3 and C-4 substitutions, respectively, could
extend into the 150-cavity (Figure 3d). Both compounds
demonstrated inhibition of wild-type and oseltamivir-resistant
group-1 influenza A viruses and suggest the use of the 150-cavity
for drug discovery. Because the pocket is transient, it is important
to assess its conformational states in the process of substrate
binding. Molecular dynamics studies suggest a wider open 150-
cavity43 in solution than that observed in crystal structures,
existence of multiple conformational states of the cavity,44 and
possible existence of the cavity in group-2 NAs. Better
assessment of the cavity and its evaluation for binding of small
molecules may lead to new classes of NA-inhibiting influenza
drugs.

■ M2 ION-CHANNEL ACTIVITY AND INHIBITION

The influenza A virus particle enters a host cell in an endosome.
The surface of influenza A virus has few copies of M2 proteins45

in addition to multiple copies of NA and HA. Low pH in the
endosome causes conformational changes of HA that initiates

the fusion of the viral and endosomal membranes.46 Simulta-
neously, the ion channel protein M247 flows protons into the
virus for releasing RNPs (ribonuclear proteins, Figure 1b) from
the inner surface of the viral membrane into the cytoplasm
(Figure 4a). The first line of flu drugs were adamantanes
(amantadine (8,48 Figure 5) and rimantadine (9)49) that target
the M2 protein. A sharp rise in adamantane resistance in H3N2
and H1N1 influenza A viruses50 undermined the utility of
adamantanes; therefore, the treatment options with M2-
inhibiting drugs were replaced with oseltamivir in the U.S.
Recent surveillances have detected circulating seasonal H1N1
viruses containing resistance mutations to both adamantanes and
oseltamivir.51

M2 protein has an N-terminal extracellular domain (residues
1−23), a transmembrane (TM) domain (residues 24−46), and a
C-terminal intracellular domain (residues 47−97). The M2
molecules are functional as homotetramers; a bundle of four TM
helices form the proton channel across the viral membrane.
Extensive structural, biophysical, biochemical, and computa-
tional studies on the tetrameric arrangements of TM helices have
been carried out in recent years that have increased significantly
our understanding of the molecular mechanisms of proton flow,
drug binding, and drug resistance. The conserved residues Ser31,
His37, Trp41, Asp44, and Arg45 are critical for channel
formation and proton transfer47b (Figure 4b,c). Tetrameric
His37 cluster is important for pH activation of the channel,52 and
Trp41 cluster forms the “channel gate”;53 the Val27 cluster at the
entrance to the channel also apparently forms a secondary gate.54

Structures of influenza AM2 were determined in complexes with
8 (amantadine) and 9 (rimantadine) simultaneously by X-ray
crystallography55 and solution NMR,56 respectively. Both
structures agreed on the tetrameric arrangement of TM helices
to form the ion channel; however, the structural studies
uncovered two distinct binding sites and mechanisms of
inhibition for adamantine drugs. The crystal structure
determined by DeGrado and colleagues55 revealed the binding
of amantadine between the residues Ser31 and His37 in the pore,
and the structure favored a “pore-blocking” model of inhibition
by adamantanes (Figure 4b,c). Amantadine was positioned near
the Ser31 cluster, and the structure supported a direct impact of
the S31N mutation on the binding of adamantanes. The NMR
structure of M2 protein (TM helix + cytoplasmic domain,
residues 18−60) in dihexanoylphosphatidylcholine (DHPC, pH
7.5) micelles by Schnell and Chou56 revealed a closed
arrangement of TM helices compared to an open-pore
conformation of TM helices in the crystal structure determined
at pH 5.3.55 The NMR structure revealed binding of four
rimantadine molecules, each to a lipid-exposed allosteric site
between adjacent TM helices near the TM−cytoplasm interface.
The allosteric site is flanked by the conserved pore residues
Tyr41, Asp44, and Arg45. Therefore, binding of an adamantine
was proposed to stabilize the pore-closed conformation of the

Figure 5. Chemical structures of M2 inhibitors (8) amantadine, (9) rimantadine, (10) alkylamine, (11) spiropiperidine, and (12) spiroamantadine.
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TM helix bundle. This unexpected controversy on the binding of
adamantanes triggered a series of follow-up studies.
A solid-state NMR study by Hong and colleagues57 suggested

existence of hydrogen bond interaction between Ser31 and
amantadine. This study favored amantadine binding to the pore;
however, the binding mode of amantadine was predicted to be
flipped upside down compared to the crystal structure.55 In a
following solid-state NMR study of M2 TM domain in
phospholipid bilayers and at varying concentration of deuterated
amantadine by Hong, DeGrado, and colleagues,58 the drug was
found to bind in the pore and interact with Ser31 at 1:4 molar
concentration of amantadine to protein. In the presence of excess
amantadine, they observed additional interactions of the drug
with Asp44, a residue at the allosteric side.56 A surface plasmon
resonance (SPR) study to assess binding of amantadine and
rimantadine to M2 TM domain (residues 22−46) in 1,2-
dimyristoyl-sn-glycero-phosphocholine (DMPC) liposomes59

elicited two distinct binding sites for the adamantanes with
binding affinity on the order of 0.1 mM and 0.1 μM, respectively.
By use of M2 mutants (V27A, S31N, and D44A), the study
confirmed “pore-blocking” (Figure 4c) as the high-affinity
binding site and the “allosteric site” as the low-affinity binding
site. Chou and colleagues have recently shown binding of
rimantadine to an influenza A(M2)−B(M2) chimeric channel.60

In the pore, the earlier ambiguity55,57 on orientation of the
amines of amantadine and rimantadine was ascertained by
conducting solid-state NMR study of M2 TM in lipid bilayer and
dodecylphosphocholine (DPC) micelles61 rather than DHPC
micelles that the authors used in their previous study;57 the
amines of both amantadine and rimantadine pointed toward
His37, and the adjacent methyl group of rimantadine was
positioned near Gly34. The study inferred significant impact of
using different detergents in the experiment. In fact, a solid-state
NMR study of M2 (residues 22−62)62 in lipid bilayer found
different tetrameric arrangements of TM helices and intracellular
helices (Figure 4b) from that observed in DHPC micelles by
solution NMR.56 The arrangement of TM helices revealed by the
solid-state NMR study was in agreement with that observed in a
recent high-resolution crystal structure;63 Cα superposition of
TM helix bundle between the two structures was only ∼1.3 Å.
The crystal structure63 showed ordered water molecules between
the tetrameric clusters Gly34-His37, His37-Trp41, and Trp41-
Arg45 in the channel, and the study led to a hypothesis that water
molecules along with tetrameric His37 cluster are involved in
proton conductance through the channel. Aided by earlier
biophysical studies on proton conductance53,64 and UV
resonance Raman scattering from Trp41,65 the recent structure
of M2 in lipid bilayer62 suggested a mechanism of acid activation
and proton conductance through His37-Trp41 coordinated
rearrangements. The mechanism suggests that (i) a proton
transfer to His37 from a hydronium atom in the channel initiates
acid activation, (ii) in the activated state, the protonated Nε atom
of His37 points down and forms a cation−π interaction with the
indole ring of Trp41, whereas protonated Nδ atom interacts with
a water molecule on its top, and (iii) the indole ring moves away
to expose a water molecule at the bottom of the channel to
receive the proton from the Nε atom of His37.

■ DESIGNING M2 INHIBITORS
Recent controversies on binding of adamantanes to M2 and
extensive follow-up studies have (i) enhanced our understanding
of proton conductance through the TM channel, (ii) defined
binding of adamantanes to the channel (“pore-blocking” site),

and (iii) discovered a new “allosteric” inhibitor target site;
however, the druggability potential of the allosteric site needs to
be validated. This information is likely to aid in the generation of
new thoughts and ideas on how to effectively target M2 at its
multiple sites for drug discovery. In the pore-blocking site, an
adamantane binds to the channel near Ser31 with its amine group
pointing down toward the His37 cluster. The space between the
adamantine and His37 cluster is occupied by water molecules.63

Earlier attempts at chemical addition to the hydrophobic
adamantane core and designing larger molecules, however, did
not substantially improve efficacy of the M2 inhibitors; see a
recent review byDuque et al.66 In fact a recent study on structural
requirements of compounds to bind the pore identified a
branched alkylamine (10)67 of only nine non-hydrogen atoms
exhibiting inhibitory activity similar to that of amantadine. The
study also inferred that a hydrophobic head and an amine tail
apparently are two important pharmacophoric requirements for
potent M2 pore-blocking inhibitors. A systematic evaluation of
pore-lining residues for their ion selectivity, amantadine
sensitivity, specific activity, and pH-dependent conductance
demonstrated that several mutations of the pore-lining residues
enhance one or more functions; however, most of the residues
are required to remain invariant for the pH-regulated proton flow
through the channel.68 This study correlates with the fact that
only three mutations L26F, V27A, and S31N are predominantly
observed in transmissible amantadine-resistant influenza A
viruses.50b,69 An interesting compound series synthesized as
M2 channel inhibitors was spiropiperidine (11).70 Importantly, a
spiro-adamantane compound (12)71 demonstrated inhibitory
activity against L26F and V27A mutants.72 The compound 12
inhibits V27Amutant channel at IC50 of∼0.3 μMand themutant
virus in a plaque reduction assay at 1 μM, whereas 50 μM
amantadine had no visible impact on the plaque reduction.72

Admirably, recently gained knowledge on M2 structure and
mechanism is starting to help design inhibitors to overcome drug
resistance. Inhibitors that can additionally defeat the primary
clinical resistance mutation S31N would bring new classes of M2
inhibiting influenza A drugs. S31N mutation appears to conflict
directly with the binding of adamantanes. The V27A mutation is
expected to open up the secondary gate; however, the mutation
may cause resistance by increasing the off rate (koff) for an
inhibitor in the pore. Further understanding of the molecular
mechanisms by which the mutations impact the binding of drugs
is also essential to overcome resistance.
Although theM2 pore remains a valid target for small molecule

drugs, future research focus on the allosteric site56 may open up
opportunities for the discovery of new classes of M2 inhibitors.
Rimantadine binds to the allosteric site with an affinity that is
about 3 orders of magnitude weaker than its binding affinity to
the pore. Analysis of a recent M2 structure62 (Figure 4b,d)
reveals the existence of the allosteric pocket even in the absence
of rimantadine. Docking of rimantadine into the site, as shown in
Figure 3d, based on the binding of rimantadine to M2 in the
solution NMR structure56 suggests that the inhibitor binding to
the site is not optimized, and significantly larger compounds may
be accommodated at the site with enhanced binding affinity. The
intracellular helices in the solid-state NMR structure62 are
positioned to form a wall for the allosteric site. The hydrophobic
and aromatic side chains of the helix residues, in particular Phe54,
may aid binding of M2 allosteric inhibitors. Rearrangement of
TM helices and repositioning of the cytoplasmic helices with
respect to TM helices are essential for proton transport. These
rearrangements are also likely to provide multiple conformations
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of the allosteric pocket to trap chemically diverse compounds,
analogous to the non-nucleoside binding site of HIV-1 reverse
transcriptase that is currently targeted by five anti-AIDS drugs
derived from four distinct chemical classes.73 A potent allosteric
M2 inhibitor, if discovered, would block proton flow by locking
the TM helices in one conformation and by restricting the
conformational mobility of Trp41 side chains.

■ VIRAL POLYMERASE

Three polypeptide chains PA, PB1, and PB2 assemble74 to form a
hetrotrimeric RNA-dependent RNA polymerase (RdRP) of
mass∼250 kDa, the largest molecular machine of influenza virus.
A trimetric viral polymerase is also associated with each vRNA
segment, which is encapsidated with multiple copies of the
nucleoprotein (NP) molecule, attached at an interval of
approximately one NP per 24 nucleotides. Electron microscopic
studies have revealed the overall conformations of influenza
polymerase and vRNP (Figure 1b)8,75 that, aided by biochemical
studies, may help in understanding the molecular architecture
and conformational states of the polymerase.
Fusion of virus into the host cell releases the eight vRNPs that

were previously wrapped with the matrix protein M1 and
attached to the inner wall of the virus (Figure 4a). The free

vRNPs are then transported into the nucleus where the viral
polymerase carries out catalytic reactions of RdRP to perform
two distinct tasks on each vRNA: (i) transcription into mRNA
(messenger RNA)76 and (ii) replication to produce progeny
genome copies (vRNA → cRNA (complementary RNA) →
vRNA). Viral mRNAs are transported into the cytoplasm and
translated to synthesize corresponding viral proteins. The
polymerase uses different replication initiation approaches for
synthesis of cRNA and vRNA;77 however, replication of both
requires NP molecules.78 A vRNA produced at the end of a
complete replication cycle is packaged as a vRNP. A new vRNP is
associated with M1 molecules and exits to the cytoplasm via a
M1:NS2/NEP mediated transport mechanism.79 Trafficking of
vRNPs, i.e., nuclear entry of vRNPs of an infecting virus or exit of
newly formed vRNPs from the nucleus, is regulated by
dissociation or association of M1 molecules, respectively.80

Newly formed vRNPs and viral proteins are packaged into new
virus particles that are budded out of the infected cell. For further
details, see a schematic representation of the life cycle of
influenza A in our previous review9 and other recent publications
on influenza polymerase.81

Atomic resolution structure(s) of the polymerase can play
important roles in (i) understanding molecular mechanisms of

Figure 6. Cap snatching by influenza A polymerase. (a) Schematic representation of transcription of viral mRNAs. The PB2 subunit of influenza A
heterotrimeric polymerase binds the 5′-cap of a host pre-mRNA, and the endonuclease active site in the PA subunit cleaves the pre-mRNA 10−13
nucleotides downstream from the cap. The viral polymerase initiates synthesis of its mRNAs from the cleaved end of the capped-RNA fragment by its
RNA-dependent RNA polymerase activity (RdRP) and using a vRNA template. (b) Chemical structure of the m7GpppN cap (13) present at the 5′-end
of mRNAs/pre-mRNAs. (c) Molecular surface representation of crystal structure of the cap-binding domain (PB2cap) bound to an m7-GTP cap
(green).95 Only α and β phosphates are shown. (d)Molecular surface representation of the endonuclease active site present in the N-terminal domain of
PA (PAN)

97,98 that cleaves the RNA by a two cation dependent catalysis to complete the cap-snatching event.

Journal of Medicinal Chemistry Perspective

dx.doi.org/10.1021/jm300455c | J. Med. Chem. 2012, 55, 6263−62776270



this multifunctional enzyme and (ii) visualizing structural
rearrangements of functional domains that are responsible for
the enzymatic activities and for switching between transcription
and replication modes, and (iii) designing polymerase inhibitors
by targeting specific function(s) or site(s). Although an atomic
resolution structure of the full polymerase is not yet available,
significant progress has been made toward understanding the
domain structures of the polymerase and their functions and
interactions; see our earlier review9 for a description of
structurally characterized domains of influenza A polymerase.
The PA chain contains the endonuclease active site82 for cap-
snatching76 and interacts with the PB1 chain. PB1 has the RdRP
domain that has not been structurally characterized. Interactions
of PB1 with both PA and PB2 have been structurally
characterized, and these intersubunit interactions are potential
targets for drug discovery.83 Newly synthesized polymerase
proteins are transported into the nucleus as PB2 and PB1-PA
complex. A recent study reports inhibitors of PB1-PA
dimerization that inhibit nuclear import of PB1-PA and growth
of different influenza A viruses, including oseltamivir-resistant
isolates, at low micromolar concentrations.84 The PB2 chain
contains (i) the cap-binding domain, (ii) nuclear localization
sequence (NLS)85 (therefore, PB2 is transported into the
nucleus independently and assembles with PB1-PA in
nucleus),86 and (iii) mutations, in particular at amino acid
position 627 in the C-terminal domain of PB2,87 which impact
the host adaptation88 and virulence89 of influenza A virus.
Associated mutations D701N, R702K, and S714R in the NLS
region appear to improve PB2 binding with importin α
molecules90 in the cytoplasm, which enhances nuclear import
of PB2 and consequently improves the viral replication.
Understanding of the biology and molecular interactions of
influenza polymerase that are fast evolving is likely to uncover
additional targets for drug discovery.91 However, the two major
catalytic activities, i.e., cap snatching and RdRP, are very
attractive targets for small molecule inhibitors as discussed in
the following two sections.

■ INHIBITING mRNA CAP SNATCHING

After invading a host cell, a virus exploits host functions and
entities for copying viral genes and producing viral proteins.
Protein production in eukaryotic cells requires transcription of
viral mRNAs that usually contain a m7GpppN-cap structure
(13)92 at the 5′-end and a poly(A) tail93 at the 3′-end. Processing
of both termini is essential for mRNA stability and translation
efficiency. Different types of viruses use different mechanisms to
cap their mRNAs.94 The polymerase of influenza A and other
orthomyxoviruses hijacks a 5 ′-capped RNA fragment
(m7GpppNpN(10−13)) from a host pre-mRNA by a mechanism
called “cap snatching” to initiate transcription (Figure 6a),
whereas influenza vRNAs contain genetic information for adding
a poly(A) sequence at the 3′-end of viral mRNAs. The PB2
subunit (PB2cap, residues 318−482) binds the 5′-cap (Figure
6b).95 The crystal structure of PB2cap in complex with a m7GTP
revealed that the binding of 5′-cap is assisted by a hydrophobic
sandwich between the residues Phe325 + Phe404 and His357
and polar interactions with Glu361 (Figure 6c). The pocket in
the cap-binding domain of PB2 appears to be a favorable drug
target; however, a m7GTP-mimic may also be recognized by
cellular cap-binding proteins96 and cause selectivity and
cytotoxicity issues.
The capped pre-mRNA is cleaved by the endonuclease active

site present at the N-terminal domain of PA82 (PAN, residues 1−
197). Crystal structures of H5N1 PAN

97 and H3N2 PAN
98

revealed a conserved deep cleft. H3N2 PAN structure also
revealed chelation of two cations (Mn2+) at the active site,
whereas H5N1 PAN structure had only one metal ion (Mg2+),
leading to a controversy over the catalytic mechanism of
phosphodiester bond cleavage.99 Well before any understanding
of the structure or even the location of the endonuclease active
site/domain in influenza polymerase, the endonuclease activity
was targeted based on the hypothesis that the endonuclease
cleavage associated with cap snatching would share a common
cation-dependent catalytic reaction mechanism with other exo/
endonucleases.100 Several chemical classes of inhibitors (14,101

15,102 16;103 Figure 7) of influenza endonuclease activity were
developed in the past byMerck, Roche, and other pharmaceutical

Figure 7. Chemical structures of cap-snatching inhibitors: (14) diketo acid (2,4-dioxobutanoic acid),101 (15) flutimide,102 (16) N-hydroxyimide,103

(17) the endonuclease active cation sites that chelate the inhibitors in a precise geometry where the three chelating atoms are coplanar with the two
metal ions. The chelation environment is also reminiscent of the inhibitor chelation at the retroviral integrase127 and HIV RNase H active sites.108 The
diketo acid derivatives 18 and 19 were optimized by Merck as a highly specific influenza A endonuclease inhibitor101 that inhibited influenza viruses.104
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companies. All the inhibitors share a common metal chelation
mode (17), and alterations of the metal binding moieties led to
complete loss of inhibition, suggesting that a two-metal ion
chelation (17) at the active site is an absolute requirement for the
binding of these inhibitors. Some of the diketo acid derivatives
could be optimized (18,101 19104) to selectively inhibit cap-
dependent influenza virus transcription and virus yield at IC50 of
∼1 μM. Compound 19 inhibited influenza infection in mice and
validated that the cap-snatching endonuclease is an antiviral
target.104 These studies also demonstrated that alterations of the
metal binding moieties led to complete loss of inhibition,
suggesting a two-metal ion chelation (17) at the active site. The
crystal packing in the H3N2 PAN structure98 did not permit
binding of an endonuclease inhibitor; however, Cusack’s group
subsequently showed the binding of 14 to the endonuclease
domain of a Bunyaviridae RNA polymerase.105 In fact, the diketo
acid compounds were found to inhibit HIV integrase by chelating
the two metal ions at the active site that pioneered the discovery
of integrase inhibiting HIV drug raltegravir.106 Binding of
inhibitors to endonuclease,105 integrase,107 and RNase H108

enzymes shares a common metal-chelation geometry, 17. The
structurally characterized deep cleft in influenza endonuclease
may help in designing inhibitors with higher binding affinity.
Renewed interest in targeting influenza endonuclease activity has
helped in the discovery of new inhibitors109 and high-throughput
enzyme assays.110 Structural characterizations of the binding of
inhibitors to influenza endonuclease may make it possible to
optimize such inhibitors to achieve high potency and specificity.

■ INFLUENZA RNA SYNTHESIS AND RdRP
INHIBITORS

Nucleoside analogues are commonly used for treating viral
infections such as HIV, herpes simplex virus (HSV), and hepatitis
B (HBV).111 Nucleoside analogues are converted into (i) mono-,
di-, and triphosphate forms by cellular nucleoside kinases, (ii)
then compete with dNTP for incorporation into the 3′-end of a

growing nucleic acid strand by a polymerase, and (iii) block
further elongation of the nucleic acid. Nucleoside/nucleotide
drugs are highly successful in treating HIV infection. In fact
almost all anti-AIDS drug combinations use one or two
nucleoside/nucleotide analogue(s). In contrast, there is no
approved RdRP-inhibiting drug for treating flu infection.
Ribavirin (20, 1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxa-
mide; Figure 8)112 is a nucleotide-mimicking antiviral drug that is
used against several RNA viruses including HCV and human
respiratory syncytial virus (RSV).113 The predominant mode of
action by ribavirin is to block GTP synthesis in cells by inhibiting
the cellular enzyme inosine 5′-monophosphate (IMP) dehydro-
genase.114 Ribavirin (Figure 8) is converted intracellularly into its
monophosphate form ribavirin MP (21) that inhibits conversion
of IMP to xanthosine monophosphate in the GTP synthesis
pathway, leading to inhibition of RNA synthesis in cells.
However, ribavirin may also function as a nucleoside analogue
if converted intracellularly into its triphosphate (TP) form, which
may be a reason why ribavirin is not an effective RdRP inhibitor.
Enzymatically, poliovirus RNA polymerase could bind ribavirin
TP and incorporate ribavirin into RNA primer strand;115

however, ribavirin does not effectively inhibit poliovirus in cell
culture, suggesting that ribavirin MP is not efficiently converted
into ribavirin TP by cellular nucleoside kinases.
A nucleoside analogue T-705 (6-fluoro-3-hydroxy-2-pyrazine-

carboxamide, favipiravir, 22, 23,116 Figure 8) is currently in
clinical trials by Toyama Chemical Co., Ltd. (Japan) as an anti-
influenza drug candidate. In contrast to 21 (ribavirin MP), T-705
RMP (24) is not an effective inhibitor of IMP dehydrogenase. T-
705 is converted intercellularly into its triphosphate form T-705
RTP (25) which acts as a nucleoside inhibitor of influenza RdRP
(Figure 8), and importantly, T-705 does not inhibit synthesis of
cellular RNA or DNA.117 Compound 25 (T705 RTP) appears to
act as a purine analogue and was shown to be active against
oseltamivir-sensitive or -resistant H1N1, H3N2, and H5N1
influenza A strains both in cell culture and in animal
models.116,118 Compound 22 (T-705) appears to be more

Figure 8.Nucleotide analogue and RNA-dependent RNA polymerase (RdRP) inhibitors of influenza A polymerase. (a) Ribavirin (20) is converted by
cellular nucleoside kinase to ribavirin monophosphate (MP) (21), which acts as an IMP dehydrogenase inhibitor in the pathway of GTP production in
the cell. (b) T-705 (22, 23) is the only inhibitor of influenza RdRP that is in clinical trial. T705 RMP (24), the monophosphate form, is not an effective
inhibitor of IMP dehydrogenase; however, T705 RMP is converted by nucleoside kinases into T705 RTP (25), which inhibits the RdRP.
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effective than oseltamivir in inhibiting (i) multicycle infection in
plaque reduction assays,119 and (ii) late stage(s) of viral infection
in mice models.120 A combination of 4 (oseltamivir, 1 mg kg−1

day−1) and 22 (20 mg kg−1 day−1) is significantly effective for the
survival of influenza A infected mice compared to mice treated
with the individual compounds.121 Discovery and development
of 22 as an anti-influenza candidate drug establish the potential
for developing viral RdRP inhibitors as flu dugs. Recently, some
uridine-based nucleoside triphosphate analogues have demon-
strated anti-influenza activity; however, their monophosphates
do not effectively inhibit influenza A in cells because of inefficient
conversion of the nucleoside monophosphates into their active
triphosphate metabolites.122 Future research and development
efforts may help develop potent nucleoside analogues against
influenza.
Apart from inhibition of specific RdRP, cap-binding, and

endonuclease activities, influenza polymerase may also be
inhibited by allosteric inhibitors. A high-throughput viral
reduction screening of a library of over a million compounds
identified inhibitors of polymerase and NP.14c The NP inhibitors
inhibited H1N1 virus growth in cell culture and protected
infectedmice. A recent study describes a quinoline derivative that
inhibits viral replication at submicromolar concentration.123 The
compound inhibits the polymerase in a cap-dependent way;
however, the precise molecular mechanism of inhibition is not
clear. Small molecules that block binding of NP molecules and/
or restricts switching between the transcription and replication
modes of the polymerase124 would inhibit virus growth.
Interaction of NP molecules with the polymerase complex
apparently plays a critical role in switching the polymerase into
replication mode.78 Also, small viral (sv) RNA fragments of 22−
27 nucleotides produced by influenza A trigger the polymerase to
switch into replication mode and have a significant impact on
vRNA and not cRNA production.125 These findings suggest that
svRNA or NP induced switching of polymerase to replication
mode is a potential target for drug discovery.

■ CONCLUSIONS

New antivirals are needed to overcome resistance to current
influenza drugs. Recent studies have enhanced our under-
standing of M2 inhibition by adamantane drugs and resolved the
issue of how they bind M2. Current information on the role of
drug resistance and compensatory mutations on NA to restore
viral fitness while maintaining resistance to oseltamivir may aid
discovery of new NA-inhibiting drugs. Influenza A proteins NP,
NS1A, and the RdRP are important and emerging targets for
drug discovery. Like other fast mutating viruses such as HIV and
HCV, influenza A tends to develop antiviral resistance under
drug pressure. Antiviral combinations amantadine + oseltami-
vir126 and oseltamivir + T-705121 have shown therapeutic
benefits in infected mice. Therefore, discovery of new drugs
targeting different entities of influenza A may provide wider
options of synergistic drug combinations for improved
prophylactic and therapeutic benefits.
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